COURSE INFORMATION					
Course Title	Code	Semester	L+P Hour	Credits	ECTS
INTRODUCTION TO DIGITAL SYSTEMS	CSE224	4	3+2	4	6

Prerequisites CSE221 – PRINCIPLES OF LOGIC DESIGN

Language of Instruction	English
Course Level	Bachelor's Degree (First Cycle Programs)
Course Type	Compulsory
Course Coordinator	Prof. Dr. Sezer Gören Uğurdağ
Instructors	Prof. Dr. Sezer Gören Uğurdağ
Assistants	Abdullah Yıldız
Goals	This practical, hands-on course introduces digital logic design, digital system design principles. Students first learn to design large-scale logic circuits from fundamental building blocks (data paths, adders, multipliers, memory) and methods based on FPGA design flow (register-transfer design, hardware description languages, design verification and simulation). Students also learn how to interface digital circuitry to analog hardware domain. Finally, system on chip concepts are covered. Through a series of laboratory exercises using FPGA boards and microcontrollers, students acquire skills in the design/verification/implementation of digital systems.
Content	The what/why/how of ICs, FPGAs, and ASIC Flow, MOS Transistors, CMOS Logic, CMOS Process. Verilog and basic digital design principles. Combinational logic, data path, adders, carry save trees, multipliers, priority encoders. Verilog and basic digital design principles, sequential logic, barrel shifter, counters. Design verification concepts, simulation. coverage. Scheduling. Pipelining. Resource sharing. Handshaking. UART, RS232, PS/2, I ² C, SPI, VGA interfaces. Memory inference, FIFO, Block RAMs, external RAMs. CPU design, system-on-chip design. Analog-to-Digital Converters. Sensors, motor control, filters, Pulse Width Modulator, Digital-to-Analog Converters. Microcontrollers. 10 Laboratory exercises, one Term Project.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Adequate knowledge in digital electronics and digital design concepts.	1,2,3,4,5	1,2	A, B, C, D
2) Ability to design and implement digital circuits under realistic constraints and conditions.	1,2,3,4,5	1,2,3	B, D

3) Ability to debug, verify, simulate digital circuits.	4,5	1,2,3	B, D
 Ability to devise, select, and use modern techniques and tools needed for digital design. 	4,5	1,2,3	B, D
5) Ability to work in a team.	6	3	B, D

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project

	COURSE CONTENT				
Week	Topics	Study Materials			
1	THE WHAT/WHY/HOW OF ICS, FPGAS, AND ASIC FLOW. MOS TRANSISTORS. CMOS LOGIC. CMOS PROCESS.	Textbook			
2	VERILOG AND BASIC DIGITAL DESIGN PRINCIPLES. COMBINATIONAL LOGIC. DATA PATH. ADDERS, CARRY SAVE TREES, MULTIPLIERS, PRIORITY ENCODERS. XILINX ISE.	Textbook			
3	VERILOG AND BASIC DIGITAL DESIGN PRINCIPLES. SEQUENTIAL LOGIC. COUNTERS. FINITE STATE MACHINES. SIMPLE CPU DESIGN.	Textbook			
4	DESIGN VERIFICATION CONCEPTS. SIMULATION. COVERAGE.	Textbook			
5	MIDTERM I	Textbook			
6	DIGITAL DESIGN PRINCIPLES. SCHEDULING. PIPELINING. RESOURCE SHARING. HAND SHAKING	Textbook			
7	UART, RS232, I2C, SPI PROTOCOLS.	Textbook			
8	PS/2 MOUSE/KEYBOARD INTERFACE.	Textbook			
9	MEMORY INFERENCE, FIFO, BLOCK RAMS, EXTERNAL RAMS. IP CORE GENERATOR. VGA.	Textbook			
10	VGA	Textbook			
11	SENSORS, ADC, DAC PWM, MOTOR CONTROL	Textbook			
12	SYSTEM ON CHIP CONCEPTS. MICROCONTROLLERS	Textbook			
13	MIDTERM EXAM II	Textbook			
14	PROJECT DEMOS	-			

RECOMMENDED SOURCES			
Textbook	FPGA PROTOTYPİNG BY VERILOG EXAMPLES BY PONG P. CHU, WILEY		

	THE ART OF HARDWARE ARCHITECTURE, MOHIT ARORA, SPRINGER
Additional Resources	DESIGNERS BY BONNIE BAKER, ELSEVIER
	THE VERILOG HARDWARE DESCRIPTION LANGUAGE, FIFTH EDITION BY D. E. THOMAS

	MATERIAL SHARING
Documents	http://cse.yeditepe.edu.tr/coadsys
Assignments	http://cse.yeditepe.edu.tr/coadsys
Exams	http://cse.yeditepe.edu.tr/coadsys

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Mid-terms	2	50	
Assignment	2	10	
Lab Work	10	10	
Term Project	1	30	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		70	
Total		100	

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes	1	2	3	4	5
1	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.				x	
2	Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.					x
3	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.					x
4	Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.					x

5	Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.	x
6	Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.	x
7	Ability to communicate effectively both orally and in writing; knowledge of a minimum of one foreign language.	
8	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	
9	Awareness of professional and ethical responsibility.	
10	Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.	
11	Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration	14	5	70
Hours for off-the-classroom study (Pre-study, practice)	14	2	28
Midterm examination	2	2	4
Homework	2	2	4
Project	1	30	30
Final examination	1	3	3
Total Work Load			139
Total Work Load / 25 (h)			5.56
ECTS Credit of the Course			6